Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 925: 171610, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38462007

RESUMEN

In shallow lakes, there are complex relationships between lake eutrophication and greenhouse gas emissions that deserve to be studied, which are important for solving lake eutrophication, slowing down climate warming, and reducing carbon emissions. In order to explore the relationship and mechanism between eutrophication and greenhouse gases (GHGs), the net GHGs emission flux and transformation of carbon, and nitrogen in 45 shallow freshwater lakes were investigated from May to September 2022. Eutrophication facilitated potential denitrification rate (Dt) without increasing nitrous oxide (N2O) production based on the significantly positive relationship between eutrophication and Dt. This should be attributed to the shift from incomplete (N2O producing process) to complete denitrification (N2 producing process). Compared to NarG mediating nitrate (NO3-) to nitrite (NO2-), fewer eutrophication indicators showed a positive relationship with NosZ mediating N2O to N2, suggesting that more stringent conditions are required for complete denitrification, which was achieved in the lakes we investigated. Optimal reduction in net carbon dioxide (CO2) emissions occurs at high levels of primary productivity, as indicated by the V-shaped relationship between chlorophyll a (Chl a) and CO2 emissions. However, in hyper-eutrophic lakes, there is an upward trend in CO2 production. The possible explanations should include CO2 production and fixation as well as methane (CH4) oxidation. The bell-shaped relationship between the net flux of CH4 emission and Chl a could be explained that CH4 was heavily oxidized due to sufficient oxygen caused by algal bloom. This fact gave evidence for the increase of the net flux of CO2 emission in high primary productivity lakes. Therefore, the relationship and mechanism between net GHGs emission flux and eutrophication remained complex and various.

2.
Water Res ; 249: 120910, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016223

RESUMEN

Understanding the long-term variations in basins that undergo large-scale hydroelectric projects is crucial for effective dam operation and watershed management. In this study, comprehensive analyses were conducted on a dataset spanning over 20 years (1998-2018) of hydrological regime and physicochemical parameters from the Yangtze River basin to evaluate the potential impacts of the Three Gorges Dam. Water level significantly increased from 128.75±58.18 m in 2002 to 136.78±55.05 m in 2005, and the mean flow velocity significantly decreased from 2004 to 2010. However, no significant change in the flow was observed in the basin. Meanwhile, remarkable fluctuations in physicochemical parameters, including dissolved oxygen, chemical oxygen demand, conductivity, hardness, and alkalinity, were mainly observed during impoundment (2003-2009). After that, the above parameters tended to stabilize, and some even returned to their original levels. The dam's retention effect significantly reduced the suspended solids (SS) in both up- and downstream, to only one-third of the pre-operation level. And total phosphorus and chemical oxygen demand also significantly decreased with the decline of SS. Particularly, ammonium also showed a significant downward trend, with the up- and downstream of the dam falling by 36.8 % and 26.1 %, respectively. However, the increasing total nitrogen (7.5 % and 20.0 % up- and downstream of the dam, respectively) still threatened the water quality of the basin, especially in the estuaries. Additionally, the significant decline in dissolved oxygen downstream (from 8.53±1.08 mg/L to 8.11±1.36 mg/L) also exacerbated the hypoxia in the Yangtze River estuary. The results demonstrated the long-term impact of the construction of the Three Gorges Dam on the environmental elements of the Yangtze River basin, which provides reference data and guidance for the construction of big dams in major rivers in the future.


Asunto(s)
Monitoreo del Ambiente , Calidad del Agua , Ríos , Estuarios , Oxígeno , China
3.
Environ Sci Technol ; 57(7): 2992-3001, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36753734

RESUMEN

Regime shifts between nitrogen (N) and phosphorus (P) limitation, which trigger cyanobacterial succession, occur in shallow eutrophic lakes seasonally. However, the underlying mechanism is not yet fully illustrated. We provide a novel insight to address this from interactions between sediment P and nitrification through monthly field investigations including 204 samples and microcosm experiments in Lake Chaohu. Total N to P mass ratios (TN/TP) varied significantly across seasons especially during algal bloom in summer, with the average value being 26.1 in June and descending to 7.8 in September gradually, triggering dominant cyanobacterial succession from Microcystis to Dolichospermum. The regulation effect of sediment N/P on water column TN/TP was stronger in summer than in other seasons. Iron-bound P and alkaline phosphatase activity in sediment, rather than ammonium, contributed to the higher part of nitrification. Furthermore, our microcosm experiments confirmed that soluble active P and enzymatic hydrolysis of organic P, accumulating during algal bloom, fueled nitrifiers and nitrification in sediments. These processes promoted lake N removal and led to relative N deficiency in turn. Our results highlight that N and P cycles do not exist independently but rather interact with each other during lake eutrophication, supporting the dual N and P reduction program to mitigate eutrophication in shallow eutrophic lakes.


Asunto(s)
Cianobacterias , Lagos , Nitrificación , Fósforo/análisis , Nitrógeno/análisis , Eutrofización , China
4.
Environ Res ; 217: 114941, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435493

RESUMEN

Effective screening feed substitutes for improving water quality in aquaculture systems has become a trending research topic now. In this study, three typical organic agricultural wastes, including sugar cane bagasse (SC), coconut shell powder (CS), and corn cob powder (CC), were selected to evaluate their potential roles on the optimization of water quality and natural bait compared to aquafeeds. Fish feed resulted in the highest growth rate of fish but the worst water quality. Organic detritus addition markedly improved the water quality, especially soluble reactive phosphorus (SRP, decrease of 56-61%) and ammonium (decrease of 16% in SC, 47% in CC). Specially, SC induced core microbes to mediate nutrients transformation and recycling (N2-fixation, ammonification, nitrification, dissimilatory nitrate reduction to ammonia and organic nutrients decomposition), which facilitated the primary productivity based on their positive relationships. This further reduced the available nutrients (especially SRP) in the water and built a mutually beneficial microbial loop. In addition, SC addition increased the abundance of genes involved in amino acids biosynthesis pathways, photosynthesis, and carbon fixation. These results led to energy transfer to higher trophic levels. The addition of CC had a better effect than SC in terms of lower nitrogen levels and a higher fish growth rate (19% in CC, 5% in SC). However, low temperatures and carbon accumulation jointly drive the anaerobic decomposition, resulting in unhealthy microbial loops and low fish growth rates. In contrast to the direct consumption of fish feed, organic detritus can induce more natural bait to provide food for fish by regulating the microbial loop, as showed by the microbial community composition in the water and fish gut. To comprehensively assess water quality, natural bait, and fish growth and quality, certain organic detritus should be considered as an auxiliary material to partially replace feed for healthy and sustainable aquaculture systems.


Asunto(s)
Agricultura , Calidad del Agua , Animales , Estudios de Factibilidad , Polvos , Acuicultura/métodos , Nitrógeno/análisis , Peces/metabolismo
5.
Sci Total Environ ; 865: 161124, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36581272

RESUMEN

Algal extracellular organic matter (EOM) metabolites exert considerable impact on the carbon (C), nitrogen (N), and phosphorus (P) cycles mediated by attached bacteria. Field investigations were conducted in two ponds to explore the relationship among EOM metabolites from Microcystis and Dolichospermum, co-occurring microbes, and nutrient recycling from April 2021 to December 2021. Microcystis blooms primarily produced more complex bound EOM (bEOM) metabolites with many amino acid components, which facilitated bacterial colonization and provided sufficient substrates for ammonification. Meanwhile, high abundances of dissimilatory nitrate reduction to ammonium genes from co-occurring microbes such as Rhodobacter have demonstrated their strong N retention ability. Metabolic products of bEOM from Microcystis comprise a large number of organic acids that can solubilize non-bioavailable P. All these factors have collectively resulted in the increase of all fractions of N and P, except for nitrate (NO3--N) in the water column. In contrast, the EOM metabolite from Dolichospermum was simple, coupled with high abundance of functional genes of α-glucosidase, and produced small molecular substances fueling denitrification. The metabolic products of EOM from Dolichospermum include abundant N-containing substances dominated by heterocyclic substances, suggesting that the metabolic products of Dolichospermum are not conducive to N regeneration and retention. Therefore, the metabolic products of EOM from Microcystis triggered a shift in the attached microbial community and function toward C, N, and P recycling with close mutual coupling. Acquisition of N and P in Dolichospermum is dependent on itself based on N fixation and organic P hydrolysis capacity. This study provides a new understanding of the contribution of algal EOM to the nutrient cycle.


Asunto(s)
Cianobacterias , Microcystis , Microcystis/química , Nitrógeno/química , Nitratos , Carbono/química , Fósforo , Compuestos Orgánicos/química
6.
Environ Sci Technol ; 57(1): 297-309, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36576880

RESUMEN

To explore the effect of different types of dissolved organic matter (DOM) decomposition on nutrient cycling pathways and the microbial loop, four lakes with different DOM sources were investigated monthly. In Lake Tangxun, Dolichospermum decay released highly labile dissolved organic nitrogen into the water column. This induced bacterial organic nitrogen decomposition, as indicated by the increased abundance of gltB, gltD, gdh, and glnA as well as aminopeptidase activity. Genes associated with dissimilatory nitrate reduction to ammonium further fueled ammonium accumulation, driving Microcystis blooms in the summer. In Lake Zhiyin, fish bait deposits (high nitrogen, similar to Dolichospermum detritus) also caused Microcystis blooms. Detritus from Microcystis decomposition then produced high levels of labile dissolved organic phosphorus, inducing phosphatase activity and increasing soluble reactive phosphorus concentrations from September to April in Lakes Tangxun and Zhiyin. The high refractory DOM from macrophytes in Lake Houguan led to insufficient nutrient availability, leading to nutrient mutualism between algae and bacteria. The high levels of labile dissolved organic carbon from terrestrial detritus in Lake Yandong increased bacterial biomass and production, resulting in low chlorophyll content due to the competitive relationship between algal and bacterial nutrient requirements. Therefore, different DOM compositions induce unique connections among available nutrients, algae, and bacteria in the microbial loop.


Asunto(s)
Compuestos de Amonio , Cianobacterias , Lagos/química , Lagos/microbiología , Materia Orgánica Disuelta , Nitrógeno/análisis , China
7.
Microb Ecol ; 85(4): 1253-1264, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35581504

RESUMEN

Located between the South and the East China Sea, the Taiwan Straits (TWS) are a marine shelf-channel area, with unique hydrological and geomorphological features affected by rivers inflow and with recent algal blooms with red tide events. This study aimed at assessing microbial distribution and function and their modulation in response to environmental gradients. Surface (0.5 m) water samples from 16 stations along five north to south transects were collected; total prokaryotic abundance by epifluorescence microscope and carbon substrate utilization patterns by Biolog Ecoplates were estimated. Spatially, a patchy microbial distribution was found, with the highest microbial metabolic levels and prokaryotic abundance in the TWS area between Minjiang River estuary and Pingtan Island, and progressive decreases towards offshore stations. Complex carbon sources and carbohydrates were preferentially metabolized. This study provides a snapshot of the microbial abundance and activity in TWS as a model site of aquatic ecosystems impacted from land inputs; obtained data highlights that microbial metabolism is more sensitive than abundance to environmental changes.


Asunto(s)
Ecosistema , Estuarios , Taiwán , Ríos , China , Monitoreo del Ambiente , Carbono
8.
Ecotoxicol Environ Saf ; 241: 113832, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36068758

RESUMEN

Rapid development of aquaculture industry and increasing demand of various inputs (especially antibiotics), are suspected to promote the occurrence and spread of ARGs in aquaculture related environments. However, the occurrences of ARGs under different freshwater aquaculture practices are rarely known. Here, we investigated the seasonal profiles of the main ARGs, intI1 and bacteria in waters from three kinds of predominant freshwater aquaculture practices around the Honghu Lake (China), as well as their co-occurrences and interrelationships with antibiotics, heavy metals and general water quality. The results indicate that quinolone resistance genes (qnrB), tetracycline resistance genes (tetB and tetX) and sulfonamide resistance genes (sul1 and sul2) were the top five predominant ARGs with seasonal variations of abundance. Fish ponds were of the highest absolute abundances of tested ARGs than the other two modes. Crayfish ponds and their adjacent ditches shared similar ARGs profile. Different subtypes of ARGs belonging to the same class of resistance were varied in abundances. Some bacteria were predicted to carry different ARGs, which indicating multi-antibiotic resistances. Moreover, the combined environmental factors (antibiotics, heavy metals and water quality) partially shaped the profiles of ARGs and bacteria composition. Overall, this study provides new comprehensive understanding on the characterization of ARGs contamination in different freshwater aquaculture practices from the perspectives of environmental chemistry, microbiology and ecology. The results would benefit the optimization of aquaculture practices toward environmental integrity and sustainability.


Asunto(s)
Antibacterianos , Metales Pesados , Animales , Antibacterianos/farmacología , Acuicultura , Bacterias/genética , China , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Lagos
9.
Chemosphere ; 308(Pt 2): 136385, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36096301

RESUMEN

The dissimilatory nitrate (NO3-) reduction processes (DNRPs) play an important role in regulating the nitrogen (N) balance of aquatic ecosystem. Organic carbon (OC) and sulfur are important factors that influence the DNRPs. In this study, we investigated the effects of sulfur cycle and enzyme activity on DNRPs in the natural and human-modified heterotrophic sediments. Quarterly monitoring of anaerobic ammonium oxidation, denitrification (DNF), and dissimilatory NO3- reduction to ammonium (DNRA) in sediments was conducted using 15N isotope tracing method. qPCR and high-throughput sequencing were applied to characterize the DNF and DNRA microbial abundances and communities. Results showed that instead of the OC, the glucosidase activity (GLU) was the key driver of the DNRPs. Furthermore, instead of the ratio of OC to NO3-, the GLU and the ratio of OC to sulfide (C/S) correctly indicated the partitioning of DNRPs in this study. We deduced that the sulfur reduction processes competed with the DNRPs for the available OC. In addition, the inhibitory effect of sulfide (final product of the sulfur reduction processes) on the DNRPs bacterial community were observed, which suggested a general restrictive role of the sulfur cycle in the regulation and partitioning of the DNRPs in heterotrophic sediments.


Asunto(s)
Compuestos de Amonio , Nitratos , Carbono , Desnitrificación , Ecosistema , Glucosidasas , Humanos , Nitratos/análisis , Nitrógeno/análisis , Óxidos de Nitrógeno/análisis , Oxidación-Reducción , Sulfuros , Azufre
10.
Food Funct ; 13(20): 10501-10515, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36148688

RESUMEN

In this study, a novel heteropolysaccharide (EPS 7-4) with a molecular weight of 53 387 Da was isolated from Lactobacillus crispatus, and it was mainly composed of mannose (36.9%) and glucose (30.8%). EPS 7-4 showed excellent inhibitory effects on the proliferation, biofilm formation, and virulence factor gene expression of Salmonella typhimurium (S. typhimurium) by disrupting the integrity of the bacterial wall. Furthermore, EPS 7-4 can effectively restrict bacterial translocation, upregulate the abundance of Lactobacillus spp. and Bifidobacterium spp., and alleviate the S. typhimurium induced severe inflammatory response in the intestinal tract of mice. Besides, we demonstrated that EPS 7-4 can protect mice by inhibiting S. typhimurium induced pyroptosis, with the mechanism that EPS 7-4 affects ASC oligomerization during inflammasome-mediated pyroptosis. Therefore, due to its excellent anti-bacterial and anti-inflammatory abilities, EPS 7-4 is a promising health regulator owing to its excellent antibacterial and anti-inflammatory abilities.


Asunto(s)
Lactobacillus crispatus , Salmonella typhimurium , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Glucosa/metabolismo , Inflamasomas/metabolismo , Manosa/metabolismo , Ratones , Piroptosis , Factores de Virulencia/metabolismo
11.
Water Res ; 220: 118720, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35700644

RESUMEN

Twelve sampling sites from two basins of Lake Chaohu were studied seasonally from June 2020 to April 2021 in Hefei City (China) to better understand the effect of organic carbon (C) quantity and composition on nitrate (NO3--N) reduction pathways. Serious algal bloom in the west basin of Lake Chaohu (WLC) resulted in higher organic C accumulation and NO3--N deficiency in interstitial water compared to the east basin of Lake Chaohu (ELC), jointly leading to a high C/NO3--N ratio. This triggered dissimilatory nitrate reduction to ammonium (DNRA) over denitrification in terms of higher DNRA rate, nitrogen retaining index (NRI), and nrfA gene abundance mediating DNRA. Furthermore, high oxygen-alkyl C and abundance of functional genes mediating labile organic C decomposition and DNRA suggested that the alkyl carbon-oxygen bond was responsible for DNRA induction. Different bacterial community composition and diversity involved in C and nitrogen (N) metabolism in two basins indicated that bacteria in sediments of WLC were more active in NO3--N reduction. Spearman correlation analysis showed that the less represented genera, such as Thiobacillus and Clostridium, were positively correlated with both organic C and NO3--N reduction rates, respectively. Hence, organic C composition could affect NO3--N reduction function by shaping the specific bacterial community.


Asunto(s)
Compuestos de Amonio , Nitratos , Compuestos de Amonio/metabolismo , Bacterias/genética , Bacterias/metabolismo , Carbono/metabolismo , Desnitrificación , Lagos , Nitratos/química , Nitrógeno/metabolismo , Óxidos de Nitrógeno/metabolismo , Compuestos Orgánicos/metabolismo , Oxígeno/metabolismo
12.
Int J Pharm ; 615: 121478, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35041916

RESUMEN

Endocrine-disrupting chemicals (EDCs) can disrupt the gastrointestinal endocrine system and induce oxidative stress, which eventually leads to intestinal toxicity. Genistein (Gen) has a beneficial effect on the physiological functions of the gastrointestinal tract and can alleviate EDCs damage. As an estrogen-like substance, Gen may also synergize the deleterious influence of EDCs. Therefore, the targeting and concentration of Gen must be controlled during its application. In this study, a novel reactive oxygen species (ROS)-responsive nanomaterial (Gen-NM-2) containing Tempol conjugated ß-cyclodextrin and Gen was prepared. The nano-polymer exhibits a uniform rod-like morphology with an average diameter of 833 ± 12 nm and a negative zeta-potential of -20.3 ± 3.7 mV. Gen-NM-2 protected Gen from rapid metabolism in gastrointestinal tract and displayed a strong ROS scavenging ability. In response to high ROS levels, this material can effectively locate the target site and release Gen, which then exerted its effect by reducing the ROS content and regulating the ERß signaling pathway. Owing to its high bioavailability, Gen-NM-2 at relatively low doses can reduce the intestinal cytotoxicity of EDCs, thus providing a basis for the development of EDCs detoxification therapy.


Asunto(s)
Disruptores Endocrinos , Nanoestructuras , Disruptores Endocrinos/toxicidad , Receptor beta de Estrógeno , Genisteína/farmacología , Especies Reactivas de Oxígeno
13.
Food Funct ; 12(24): 12535-12549, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34812468

RESUMEN

Long-term use of antibiotic growth promoter (AGP) in animal production is the main cause of antimicrobial resistance of pathogenic bacteria. Therefore, seeking alternatives to AGP is crucial for animal husbandry. Among all AGP alternatives, probiotics are promising candidates. In this study, two strains of lactic acid bacteria, L. johnsonii 3-1 and L. crispatus 7-4, were isolated from the feces of wild Gallus gallus, which exhibited obvious anti-pathogenic activity and improved the growth performance of broilers. Furthermore, we found that these two strains participated in the lipid metabolism of broilers by reducing the content of TC and TG in ileal epithelial cells and up-regulating the liver AMPKα/PPARα/CPT-1 pathway, which affects abdominal fat deposition. In summary, L. johnsonii 3-1 and L. crispatus 7-4 have the potential to be used as AGP substitutes and participate in the lipid metabolism of broilers to reduce abdominal fat deposition. Importantly, our study reveals for the first time that L. crispatus participates in liver lipid metabolism to reduce abdominal fat deposition in broilers.


Asunto(s)
Peso Corporal/efectos de los fármacos , Íleon/efectos de los fármacos , Lactobacillus crispatus/metabolismo , Lactobacillus johnsonii/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Probióticos/farmacología , Animales , Pollos , Íleon/crecimiento & desarrollo , Íleon/metabolismo , Modelos Animales , Probióticos/metabolismo
14.
Water Res ; 204: 117625, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34530224

RESUMEN

Coastal harmful algal blooms (HABs), commonly termed 'red tides', have severe undesirable consequences to the marine ecosystems and local fishery and tourism industries. Increase in nitrogen and/or phosphorus loading is often regarded as the major culprits of increasing frequency and intensity of the coastal HAB; however, fundamental understanding is lacking as to the causes and mechanism of bloom formation despite decades of intensive investigation. In this study, we interrogated the prokaryotic microbiomes of surface water samples collected at two neighboring segments of East China Sea that contrast greatly in terms of the intensity and frequency of Prorocentrum-dominated HAB. Mantel tests identified significant correlations between the structural and functional composition of the microbiomes and the physicochemical state and the algal biomass density of the surface seawater, implying the possibility that prokaryotic microbiota may play key roles in the coastal HAB. A conspicuous feature of the microbiomes at the sites characterized with high trophic state index and eukaryotic algal cell counts was disproportionate proliferation of Vibrio spp., and their complete domination of the functional genes attributable to the dissimilatory nitrate reduction to ammonia (DNRA) pathway substantially enriched at these sites. The genes attributed to phosphorus uptake function were significantly enriched at these sites, presumably due to the Pi-deficiency induced by algal growth; however, the profiles of the phosphorus mineralization genes lacked consistency, barring any conclusive evidence with regard to contribution of prokaryotic microbiota to phosphorus bioavailability. The results of the co-occurrence network analysis performed with the core prokaryotic microbiome supported that the observed proliferation of Vibrio and HAB may be causally associated. The findings of this study suggest a previously unidentified association between Vibrio proliferation and the Prorocentrum-dominated HAB in the subtropical East China Sea, and opens a discussion regarding a theoretically unlikely, but still possible, involvement of Vibrio-mediated DNRA in Vibrio-Prorocentrum symbiosis. Further experimental substantiation of this supposed symbiotic mechanism may prove crucial in understanding the dynamics of explosive local algal growth in the region during spring algal blooms.


Asunto(s)
Dinoflagelados , Microbiota , Vibrio , Proliferación Celular , Dinoflagelados/genética , Floraciones de Algas Nocivas
15.
Harmful Algae ; 107: 102077, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34456026

RESUMEN

Coastal ecosystems are often subjected to anthropogenic disturbances that lead to water quality deterioration and an increase in harmful algal bloom (HAB) events. Using the next-generation molecular tool of 18S rDNA metabarcoding, we examined the community assemblages of HAB species in the Johor Strait, Malaysia between May 2018 and September 2019, covering 19 stations across the strait. The molecular operational taxonomic units (OTUs) of HAB taxa retrieved from the dataset (n = 194) revealed a much higher number of HAB taxa (26 OTUs) than before, with 12 taxa belong to new records in the strait. As revealed in the findings of this study, the diversity and community structure of HAB taxa varied significantly over time and space. The most common and abundant HAB taxa in the strait (frequency of occurrence >70%) comprised Heterosigma akashiwo, Fibrocapsa japonica, Pseudo-nitzschia pungens, Dinophysis spp., Gymnodinium catenatum, Alexandrium leei, and A. tamiyavanichii. Also, our results demonstrated that the HAB community assemblages in the strait were dependent on the interplay of environmental variables that influence by the monsoonal effects. Different HAB taxa, constitute various functional types, occupied and prevailed in different environmental niches across space and time, leading to diverse community assemblages and population density. This study adds to the current understandings of HAB dynamics and provides a robust overview of temporal-spatial changes in HAB community assemblages along the environmental gradients in a tropical eutrophic coastal ecosystem.


Asunto(s)
Dinoflagelados , Microalgas , Ecosistema , Floraciones de Algas Nocivas , Fitoplancton
16.
ACS Appl Mater Interfaces ; 13(34): 40249-40266, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34424682

RESUMEN

Disruption of intestinal homeostasis is an important event in the development of inflammatory bowel disease (IBD), and genistein (GEN) is a candidate medicine to prevent IBD. However, the clinical application of GEN is restricted owing to its low oral bioavailability. Herein, a reactive oxygen species (ROS)-responsive nanomaterial (defined as GEN-NP2) containing superoxidase dismutase-mimetic temporally conjugated ß-cyclodextrin and 4-(hydroxymethyl)phenylboronic acid pinacol ester-modified GEN was prepared. GEN-NP2 effectively delivered GEN to the inflammation site and protected GEN from rapid metabolism and elimination in the gastrointestinal tract. In response to high ROS levels, GEN was site-specifically released and accumulated at inflammatory sites. Mechanistically, GEN-NP2 effectively increased the expression of estrogen receptor ß (ERß), simultaneously reduced the expression of proinflammatory mediators (apoptosis-associated speck-like protein containing a CARD (ASC) and Caspase1-p20), attenuated the infiltration of inflammatory cells, promoted autophagy of intestinal epithelial cells, inhibited the secretion of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), modulated the gut microbiota, and ultimately alleviated colitis. In addition, the oral administration of these nanoparticles showed excellent safety, thereby providing confidence in the further development of precise treatments for IBD.


Asunto(s)
Antiinflamatorios/uso terapéutico , Colitis/tratamiento farmacológico , Portadores de Fármacos/química , Depuradores de Radicales Libres/uso terapéutico , Genisteína/uso terapéutico , Nanopartículas/química , Animales , Antiinflamatorios/farmacología , Autofagia/efectos de los fármacos , Ácidos Borónicos/química , Ácidos Borónicos/toxicidad , Línea Celular , Portadores de Fármacos/toxicidad , Depuradores de Radicales Libres/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Genisteína/farmacología , Homeostasis/efectos de los fármacos , Humanos , Inflamasomas/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Nanopartículas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , beta-Ciclodextrinas/química , beta-Ciclodextrinas/toxicidad
17.
Mar Environ Res ; 169: 105398, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34171592

RESUMEN

Coastal eutrophication is one of the pivotal factors driving occurrence of harmful algal blooms (HABs), whose underlying mechanism remained unclear. To better understand the nutrient regime triggering HABs and their formation process, the phytoplankton composition and its response to varying nitrogen (N) and phosphorus (P), physio-chemical parameters in water and sediment in Johor Strait in March 2019 were analyzed. Surface and sub-surface HABs were observed with the main causative species of Skeletonema, Chaetoceros and Karlodinium. The ecophysiological responses of Skeletonema to the low ambient N/P ratio such as secreting alkaline phosphatase, regulating cell morphology (volume; surface area/volume ratio) might play an important role in dominating the community. Anaerobic sediment iron-bound P release and simultaneous N removal by denitrification and anammox, shaped the stoichiometry of N and P in water column. The decrease of N/P ratio might shift the phytoplankton community into the dominance of HABs causative diatoms and dinoflagellates.


Asunto(s)
Diatomeas , Dinoflagelados , Anaerobiosis , Eutrofización , Malasia , Nitrógeno/análisis , Nutrientes , Fósforo/análisis , Fitoplancton
18.
J Soils Sediments ; 21(10): 3427-3437, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34075310

RESUMEN

Purpose: Nitrogen (N) and phosphorus (P) are the key elements leading to eutrophication, and it is important to jointly control N and P release from sediments into the water column. Methods: Different mixed materials including P sorbent, natural organic carbon (C), and an oxidizing agent were applied in a 1-year pilot-scale experiment. Results: The addition of iron-rich (IR) clay and Phoslock agent promoted the formation of iron bound P (Fe(OOH)~P) and calcium bound P (CaCO3~P) in sediments, respectively. IR clay offered more advantages in immobilization of phosphorus as refractory P, and the Phoslock agent more effectively reduced the risk of P release into water, which was expressed as a low equilibrium P concentration (EPC0). Mixtures of sugarcane (SU) detritus and IR clay exhibited high carbohydrate (CHO) contents, which further fuelled both denitrification and dissimilatory nitrate reduction to ammonium (DNRA). This indicated that the SU dosage should be controlled to avoid DNRA over denitrification. Attention should be given to the fact that SU introduction significantly promoted the generation of an anaerobic state, leading to the desorption and release of Fe(OOH)~P, which could be alleviated by using Oxone. Multienzyme activity analysis showed that P and N transformation shifted from P desorption to organic P hydrolysis and from ammonification to denitrification and DNRA, respectively. Conclusion: We recommend the use of P sorbent and organic C combined with oxidizing agents as effective mixed materials for sediment remediation, which could enhance P adsorption and provide electron donors for denitrification, while also avoiding the generation of anoxia.

19.
Chemosphere ; 280: 130917, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34162105

RESUMEN

The effect of organic carbon (OC) quality and quantity on switch between dissimilatory nitrate reduction to ammonium (DNRA) and denitrification (DEN) was studied in biofilter systems. High OC in matrix could promote significantly nitrate (NO3--N) removal due to the reinforce of DEN. Sodium acetate (SA) addition in influent further fueled NO3--N removal in groups with low OC in matrix but increased ammonium (NH4+-N) and nitrite (NO2--N) accumulation in groups with high OC in matrix. This indicated that high OC combined different species, facilitated the DNRA over DEN. Compared to bagasse, corncob was the better suitable OC source in matrix for DEN due to slow and continuous release of OC. Hence, in order to promote NO3--N removal and decline NH4+-N accumulation in biofilters, it is very important to screen suitable OC source (mixed utilization of multiple C sources is recommended) and regulate its dosage (below 80 mg L-1).


Asunto(s)
Compuestos de Amonio , Nitratos , Carbono , Desnitrificación , Nitrógeno , Oxidación-Reducción
20.
Front Microbiol ; 12: 542064, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679624

RESUMEN

Despite fungi playing an important role in nutrient decomposition in aquatic ecosystems and being considered as vital actors in the ecological processes, they received limited attention regarding the community in aquaculture pond sediments which are extremely important and typically disturbed habitats. Using an ITS1 region of fungal rDNA, this study aimed to investigate sediment fungal communities in fish, crab, and crayfish ponds for decades of farming practices at representative aquaculture regions in the middle Yangtze River basin, China. We then aimed to explore the community patterns associated with species-based farming practices in the ponds at 18 farms. The results showed that the pond sediments harbored more than 9,000 operational taxonomic units. The sediments had significantly higher alpha diversity in crab ponds compared to that in fish and crayfish ponds. The fungal phyla largely belonged to Ascomycota and Chytridiomycota, and the dominance of Rozellomycota over Basidiomycota and Aphelidiomycota was observed. The majority of sediment fungal members were ascribed to unclassified fungi, with higher proportions in fish ponds than crab and crayfish ponds. Further, the fungal communities were markedly distinct among the three types of ponds, suggesting divergent patterns of fungal community assemblages caused by farming practices in aquaculture ponds. The community diversity and structure were closely correlated to sediment properties, especially sediment carbon content and pH. Thus, the distribution and pattern of fungal communities in the sediments appear to primarily depend on species-based farming practices responsible for the resulting sediment carbon content and pH in aquaculture ponds. This study provides a detailed snapshot and extension of understanding fungal community structure and variability in pond ecosystems, highlighting the impacts of farming practices on the assembly and succession of sediment fungal communities in aquaculture ponds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...